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The Solution of Euler’s Equation and the Value of Pi 

John C. Herrera* and Animesh Jain 
Superconducting Magnet Division, Brookhaven National Laboratory, Upton, NY 11973 

1. Introduction: 

The classic Euler’s relation, exp( 1) −=πi , may be looked at as defining the constant π in 
terms of the numbers (–1) and  e.  To emphasize this, the relation can be represented as a 
function of the complex variable, z 

 1)exp()( += zzf  (1) 

Then a root of Eq.(1) will equal the complex value: 

 .    0 π+= iz  (2) 

It is our purpose in this paper to solve for this root and thereby obtain a series expansion 
for the numerical value of π.  The method we shall follow is that developed in 
reference [1] for finding the roots of a general polynomial of arbitrary degree. 

2.  Taylor Series for the Euler Equation: 

Consistent with reference [1], we now expand Eq.(1) into a Taylor series about an 
arbitrary non-singular offset point, .  Thus, we have 0z
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with the infinite set of Taylor coefficients: 
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We note that the Taylor series, Eq.(4) has an infinite radius of convergence about the 
point . 0z
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3.  Reversion Series of Euler’s Equation: 

The reversion series for the Taylor expansion, Eq.(4), is written as: 
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with the infinite set of reversion coefficients: 
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Eqs.(6) and (7) now allow us to write the reversion series expanded about the offset 
 in the complex  f-plane as: )(za 00

 [ ] .    )()1()(
1

00
1

0
0

∑
∞

=

−
+ −










−+=

n

n
n

n af
n

ef zzz
z

 (8) 

This Taylor series has a radius of convergence in the  f-plane expressible as: 
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Therefore, in order that the reversion series, Eq.(6), converges, it is necessary that 

 0)( 00
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or 001 zz eef <−−  (11) 

4.  The root of Euler’s Equation: 

If we insert into Eq.(6) the value of  f  equal to zero, we obtain a series expression for the 
root of Euler’s equation, that is 
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where the initial offset, , of Eq.(3) is now required, according to Eq.(11), to satisfy the 
condition 

0z

 .    1 00 zz ee <+  (13) 
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At this point in our development we choose the initial offset equal to (  with the 
result that Eq.(12) becomes 
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while   is restricted, according to Eq.(11), to the range 0t
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When we separate Eq.(14) into its real and imaginary parts, we arrive at 
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and  
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Of course, the numerical value chosen for  must be within the continous linear range 
specified by Eq.(15).  As a consequence, it may be concluded that this condition is 
equivalent to saying that the entire set of series represented by Eq.(17), each of value π, 
has the cardinality of Cantor’s continuum [2].  Interestingly, though we have searched the 
literature on the calculation of π, including the recently published text [3] and the 
encyclopedic work of Berggren, Borwin, and Borwein [4], we have not found any series 
which would be a member of this noncountable set. 

0t

5.  Numerical Value of  π  by Series: 

Eq.(17), when evaluated for any value of  within the specified range, Eq.(15), will yield 
the numerical value of π.  Thus, for example, if we let 

0t
30 =t , we have 
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while from Eq.(16) 
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When we evaluate Eqs.(18) and (19) over a finite number of terms, the vanishing of the 
value of the finite sum in Eq.(19) serves as an indication of the correctness of the value of 
π up to the same number of terms.  However, we should emphasize that the true check of 
using Eq.(17) is that it must give the identical numerical value of π for different initial 
values of . 0t

t t

6. Iterative Evaluation of  π: 

Eq.(17), as such, does not converge rapidly (except, of course, if we insert the sought 
after value of π).  This suggests that in an actual calculation of π, we should employ the 
following iterative procedure based on the first two terms of Eq.(17).  Hence, upon 
choosing an arbitrary value of , we calculate successive values of  according to the 
iterative sequence: 
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Similar to the exact series solution, each step of this sequence must bring the first term of 
Eq.(16) closer to zero.  Again, we should emphasize that the true check of the above 
algorithm is that it gives the identical value of  π  for different starting values of t .  
Because of the freedom in choosing a specific value of t  at every step, the overall 
algorithm is self-correcting. 

0

n

A good way of visualizing what one is really doing when we calculate π using Eq.(17) is 
to imagine the whole noncountable set of series, each having its own starting value.  One 
then proceeds by summing an arbitrary number of terms of the  series, and having 
arrived at some , one then “jumps” over to the series which starts with .  One then 
sums some terms of this series and then “jumps” to a new series with t  as its starting 
value, and so on with a succession of starting and “jump” values.  Had we chosen the 
jumping value when two terms of each series had been summed, we would have been 
following the iterative sequence of Eq.(20).  Such a sequence has been suggested by 
Donald Shanks for finding an improved approximation for π from a given number of n 
accurate digits [5]. 

0t
t t1 1

2

7.  Conclusion: 

We have verified Eq.(17) and (16) as well as the iterative sequence, Eq.(20) with 30-digit 
and 90-digit arithmetic precision.  Finally we can state that our method of solving Euler’s 
equation for the numerical value of π is a new approach to investigating this fundamental 
number. 
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